时 间: 2022-10-19 16:00 — 17:00
In this paper, we propose a new framework to construct energy stable scheme for gradient flows based on the discrete variational derivative method. Combined with the Runge--Kutta process, we can build an arbitrary high-order and unconditionally energy stable scheme based on the discrete variational derivative method. The new energy stable scheme is implicit and leads to a large sparse nonlinear algebraic system at each time step, which can be efficiently solved by using an inexact Newton type algorithm. To avoid solving nonlinear algebraic systems, we then present a relaxed discrete variational derivative method, which can construct linear unconditionally second-order energy stable schemes. Several numerical simulations are performed to investigate the efficiency, stability, and accuracy of the newly proposed schemes.