当前位置: 首页/ 学术报告

Bernoulli property of equilibrium states for certain partially hyperbolic diffeomorphisms

发布时间:2022-01-10 浏览量:70

时   间:  2022-01-10 14:00 — 15:00

地   点:  腾讯会议 APP3()
报告人:  吴伟胜
单   位:  厦门大学
邀请人:  王晓东
备   注:  腾讯会议:266-332-757 会议密码:123123
报告摘要:  

Kolmogorov-Bernoulli equivalence is a classical problem in ergodic theory. We consider topologically transitive partially hyperbolic diffeomorphisms with Lyapunov stable center direction. There exists a unique equilibrium state for any potential function satisfying Bowen property, by Climenhaga-Pesin-Zelerowicz. In this talk, we show that when the system is topologically mixing, the unique equilibrium state has the Kolmogorv property. Then we lift the Kolmogorv property to the Bernoulli property using Ornstein-Weiss theory.