当前位置: 首页/ 学术报告

Gevrey solutions of quasi-linear hyperbolic hydrostatic Navier-Stokes system

发布时间:2023-04-16 浏览量:724

时   间:  2023-04-16 19:00 — 21:00

地   点:  腾讯会议 APP()
报告人:  张平院士
单   位:  中科院数学与系统科学研究院
邀请人:  上海市现代分析前沿科学研究基地
备   注:  腾讯会议号:945479532,密码:753726
报告摘要:  

We study the well-posednessof  a hyperbolic quasilinear version of hydrostatic  Navier-Stokes system in  $\R\times\T$, and  prove the global well-posedness of the system with initial  data which are small and analytic  in both variables. We also prove the convergence of such analytic solutions to that of the classical hydrostatic Navier-Stokes system when the delay time converges to zero. Furthermore, we obtain a local well-posednessresult in Gevrey class $2$ when the initial datum is a small perturbation of some convex function.