时 间: 2022-07-19 19:30 — 20:30
In this talk, we will introduce the global existence of classical (outflow) solutions for the two-dimensional axisymmetric compressible Euler system. We derive several groups of characteristic decompositions for the 2D axisymmetric compressible Euler system. Using these characteristic decompositions, we find several types of expanding initial data to ensure the existence of global-in-time classical solutions. These solutions are outflow solutions and contain an expanding vacuum region centered at the origin.
报告人简介Introduction to the Speaker:
赖耕,博士毕业于上海大学数学系,曾在复旦大学数学科学学院从事博士后研究工作,现任上海大学理学院副教授。主要从事非线性双曲守恒律方程组的研究,如可压Euler方程组的二维Riemann问题、气体动力学中的激波反射问题、气体向真空扩散问题、超声速射流问题等,相关结果发表在Arch. Ration. Mech. Anal.、J. Math. Pures Appl.、SIAM J. Appl. Math.、SIAM J. Math. Anal.、Indiana Univ. Math. J.等数学期刊上。