当前位置: 首页/ 学术报告

Global existence of bounded smooth solutions for the one-dimensional nonisetropic Euler equations

发布时间:2022-07-18 浏览量:98

时   间:  2022-07-18 19:30 — 20:30

地   点:  腾讯会议 APP3()
报告人:  赖耕
单   位:  上海大学
邀请人:  朱圣国
备   注:  地点Venue:#腾讯会议:833 435 099 点击链接入会,或添加至会议列表: https://meeting.tencent.com/dm/Bjrlm1skO0Hk
报告摘要:  

In this talk, we will introduce the global existence of bounded smooth solutions for the one-dimensional (1D) nonisentropic Euler system with large initial data. We find a sufficient condition on the initial data to obtain the global existence of bounded smooth solutions. One of the main difficulties for the global existence is that a priori C1norm estimates for the unknown functions are hard to establish. We derive a group of characteristic decompositions for the 1D full Euler equations. These characteristic decompositions can be seen as a system of  “ordinary differential equations” for the derivatives of the unknown function. Using these characteristic decompositions,we establish a priori C1 norm estimates for the solution.

报告人简介Introduction to the Speaker:

赖耕,博士毕业于上海大学数学系,曾在复旦大学数学科学学院从事博士后研究工作,现任上海大学理学院副教授。主要从事非线性双曲守恒律方程组的研究,如可压Euler方程组的二维Riemann问题、气体动力学中的激波反射问题、气体向真空扩散问题、超声速射流问题等,相关结果发表在Arch. Ration. Mech. Anal.、J. Math. Pures Appl.、SIAM J. Appl. Math.、SIAM J. Math. Anal.、Indiana Univ. Math. J.等数学期刊上。